A Hg(2+)-mediated label-free fluorescent sensing strategy based on G-quadruplex formation for selective detection of glutathione and cysteine.

نویسندگان

  • Jingjin Zhao
  • Chunfei Chen
  • Liangliang Zhang
  • Jianhui Jiang
  • Guoli Shen
  • Ruqin Yu
چکیده

A novel label-free fluorescent strategy for the detection of glutathione (GSH) and cysteine (Cys) is presented. The system consists of two single stranded DNA (ssDNA) with thymine-thymine (T-T) mismatches and used Hg(2+) as a mediator, and N-methyl mesoporphyrin IX (NMM) as the signal reporter. The assay is based on the competitive reaction of Hg(2+) with GSH/Cys and T-T mismatched double stranded DNA (dsDNA). In the absence of the target, two ssDNA containing T-T mismatches react with Hg(2+) to form a T-Hg(2+)-T dsDNA structure in the solution, which hampers the formation of a G-quadruplex structure. However, in the presence of the target, GSH/Cys reacts with Hg(2+) to keep DNA probes in a free single state, resulting in the effective formation of a G-quadruplex structure of the DNA probe (GP). Subsequently, due to the strong interaction between the G-quadruplex structure and NMM, fluorescence was greatly enhanced. This fluorescence strategy does not require any chemical modification, making the assay convenient and cost-effective. This method exhibited a linear relationship between peak fluorescence intensity and concentration of GSH in the range of 10-400 nM with a limit of detection (LOD) of 9.6 nM. A linear range for Cys detection was obtained in the concentration range of 10-500 nM with an LOD of 10 nM. Moreover, the proposed method worked well for the analysis of complex biological samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Label-free fluorescent detection of thrombin using G-quadruplex-based DNAzyme as sensing platform.

We report herein a label-free and sensitive fluorescent method for detection of thrombin using a G-quadruplex-based DNAzyme as the sensing platform. The thrombin-binding aptamer (TBA) is able to bind hemin to form the G-quadruplex-based DNAzyme, and thrombin can significantly enhance the activity of the G-quadruplex-based DNAzyme. The G-quadruplex-based DNAzyme is found to effectively catalyze ...

متن کامل

Label-Free Detection of Cu2+ and Hg2+ Ions Using Reconstructed Cu2+-Specific DNAzyme and G-quadruplex DNAzyme

Label-free metal ion detection methods were developed. To achieve these, a reconstructed Cu(2+)-specific DNA-cleaving DNAzyme (Cu(2+)-specific DNAzyme) with an intramolecular stem-loop structure was used. G-quadruplex-forming G-rich sequence(s), linked at the ends of double-helix stem of an intramolecular stem-loop structure, was partly caged in an intramolecular duplex or formed a split G-quad...

متن کامل

A label-free G-quadruplex-based switch-on fluorescence assay for the selective detection of ATP.

A G-quadruplex-based, label-free, switch-on fluorescence detection method has been developed for the selective detection of ATP in aqueous solution using crystal violet as a G-quadruplex-selective probe. The assay is highly simple and rapid, and does not require the use of fluorescent labeling.

متن کامل

A Label-Free and Sensitive Fluorescent Qualitative Assay for Bisphenol A Based on Rolling Circle Amplification/Exonuclease III-Combined Cascade Amplification

Bisphenol A (BPA) detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA)/Exonuclease III (Exo III)-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 138 6  شماره 

صفحات  -

تاریخ انتشار 2013